Современная медицина является областью научной и практической
деятельности по исследованию нормальных и патологических процессов
в организме человека, различных заболеваний и патологических состояний,
их лечению, сохранению и укреплению здоровья людей.
Директор российского Института физико-химической биологии им. А. Н. Белозерского академик Владимир Скулачев убежден в том, что старение - запрограммированный механизм. Истоки этой убежденности академик находит у Альфреда Рассела Уоллеса, известного тем, что он сформулировал одновременно с Дарвином идею естественного отбора. По мнению Уоллеса, родители становятся помехой для потомства в конкуренции за пищу, и естественный отбор дает преимущество тем расам, представители которых умирают сразу после произведения потомства. В конце XIX века эту мысль развил известный биолог Август Вейсман: «Я рассматриваю смерть не как первичную необходимость, но как нечто приобретенное вторично в качестве адаптации. Я полагаю, что жизнь имеет фиксированную продолжительность не потому, что по природе своей не может быть неограниченной, а потому, что неограниченное существование индивидуумов было бы роскошью без какой-либо проистекающей из нее выгоды. Изношенные индивидуумы не только бесполезны для вида, но даже вредны, поскольку они занимают место тех, кто здоров». Идеи Вейсмана подвергли остракизму. Оппоненты утверждали, что эволюция не могла создать подобного механизма, и один из аргументов - в природе подавляющее большинство организмов погибает до того, как окончательно состарится. Однако позже выяснилось, что старение начинается не с седины и болей в суставах, а задолго до того, как оно может стать непосредственным поводом для смерти. «Есть доказательства, что человеческий организм начинает стареть очень рано, - говорит Владимир Скулачев. - По одной версии - после окончания роста, примерно лет в двадцать, по другой - по окончании полового созревания, лет в двенадцать». По словам Скулачева, есть еще немало предположений, зачем могли бы понадобиться природе запрограммированные смерть и старение. Бессмертие или слишком долгая жизнь могли бы означать более медленную смену поколений и в связи с этим - уменьшение вероятности возникновения новых признаков в потомстве, что вовсе не на руку эволюции. У некоторых видов смерть действительно наступает сразу после полового размножения. Так, сразу после откладывания яиц погибает самка осьминога. Бамбук живет лет пятнадцать, пока размножается вегетативно, но после созревания семян сразу погибает. И это подтверждает мысль о заложенной программе самоликвидации. Ядовитый кислород может привести к самоубийству клетки По мнению академика, природе нужен был такой механизм и для того, чтобы защищать геном от повреждений. Вероятность появления повреждений тем выше, чем сложнее организм и чем он старше. Не раз учеными было показано, что даже небольшое количество особей с мутациями через несколько поколений могло привести к гибели популяции, поэтому природа могла предусмотреть такую жесткую очистку от уродцев популяции ради своего спасения. Ведь действует же подобный механизм в отдельных клетках! Впервые гипотеза о том, что в геноме может быть заложен механизм запрограммированной смерти на клеточном уровне, была доказана в 1972 году. Об этом написали в своей работе Дж.Керр, А.Уилье и А.Курье. Феномен был назван апоптозом. В 2002 году С. Бреннеру, Г. Хорвицу и Дж. Салстону была присуждена Нобелевская премия по физиологии и медицине за работу по идентификации генов программы апоптоза у червя-нематоды. Ученые выяснили, что эти гены кодируют белки, запускающие сложный каскад реакций, в результате чего клетка буквально распадается на мелкие кусочки. Эти кусочки используются в качестве строительного материала другими клетками. Апоптоз запускается для того, чтобы «убрать» лишние, неправильные или больные клетки, в том числе и раковые. Апоптоз может распространяться на ткани и органы, когда от одной клетки сигнал к самоубийству идет соседним клеткам. Это происходит во время сепсиса, а также инфаркта. Апоптоз используется и для уничтожения целых органов в процессе индивидуального развития организма: так исчезает хвост у головастика. Если есть клеточный апоптоз и апоптоз органов, так почему же не быть апоптозу всего организма? Впрочем, для начала академик Скулачев изучил апоптоз на внутриклеточном уровне. К примеру, самоликвидации подвергаются митохондрии (органеллы, окисляющие питательные вещества кислородом и высвобождающие энергию в виде АТФ). Изучив этот процесс, Скулачев назвал его митоптозом. По его мнению, митоптоз может наступать, если в митохондриях образуется слишком много так называемых активных форм кислорода - оксидантов, весьма токсичных для организма. В организме есть своя антиоксидантная защита, но в какой-то момент вредоносного активного кислорода становится все больше, а антиоксидантов все меньше. Под воздействием большого количества АФК у митохондрий открываются «поры», при этом между мембранами исчезает разность потенциалов, что делает невозможным проникновение в митохондрию нужных для нее веществ. И митохондрия принимает решение о самоубийстве, причем из альтруистических соображений - чтобы спасти геном клетки от атаки активными формами кислорода. Но иногда концентрация погибших митохондрий слишком велика. И тогда из них внутрь клетки попадает слишком много разных белков, часть из которых вызывает апоптоз целой клетки. Если в организме клеток гибнет больше, чем рождается, это и означает старение. «Мышцы не потому слабеют, что у них постарели клетки, - говорит Скулачев, - просто их становится все меньше». Если гипотеза верна и старение - это программа со своим механизмом, то его можно остановить, ведь научились же ученые останавливать механизм самоубийства клеток (пресекая каскад реакций ингибитором одного из важных для этого процесса белков). И если механизм старения работает с помощью ядовитого активного кислорода, то можно придумать вещество, которое бы нейтрализовало этот яд. До Скулачева подобное вещество лет пять-шесть назад предложил Майкл Мерфи из Кембриджа. Однако и здесь без Скулачева не обошлось. Еще в 1969 году он вместе с Ефимом Либерманом открыл, что некоторые искусственные катионы (положительно заряженные ионы) легко проникают сквозь мембрану не только клетки, но и митохондрии. Причем в последнюю гораздо резвее, потому что в митохондриях электрическая разность потенциалов в три раза выше, чем в клетке, а это способствует тому, что положительно заряженные ионы легко втягиваются именно туда. А значит, к этим катионам, как к электровозам, можно прицепить вагончик (к примеру, антиоксидант). Важна именно такая конструкция - катион плюс антиоксидант, иначе проблему можно было бы решить поглощением большого количества природных антиоксидантов типа витамина Е. Но, оказывается, организм стремится к балансу: как только в нем появляется много лишнего витамина, активируется фермент, убирающий лишнее. А антиоксидант с катионом избегает ферментовуборщиков, поскольку стремительно втягивается в митохондрии, а там этих ферментов нет. Мерфи первым использовал этот принцип (опубликованный С. Севериным, В.Скулачевым и Л. Ягужинским еще в 1970 году) и подсоединил к «электровозу» известный антиоксидант коэнзим Q. Коэнзим Q способен придавать свободному радикалу (ядовитому кислороду) лишний электрон и таким образом восстанавливать его до безвредного кислорода. «После опытов Мерфи я тоже вернулся к этой конструкции, которая могла помочь в решении моей задачи», - продолжает Скулачев. Был и еще один стимул вплотную заняться проверкой гипотезы. Примерно одновременно с опытами Мерфи немецкие и французские ученые сделали открытие, которое очень вдохновило Скулачева. Немцы с французами выяснили, что замена лишь одной буквы в геноме гриба-подоспоры вызывает любопытнейшие последствия. Измененный ген перестает кодировать белок, участвующий в клеточном дыхании. Казалось бы, гриб должен умереть. Но оказалось, что у гриба есть запасной механизм. Включается другой ген, который кодирует еще один белок, участвующий в клеточном дыхании, но при этом гриб начинает жить по-другому: процесс образования энергии замедляется, гриб переходит с полового на вегетативное размножение, но самое поразительное - он перестает стареть! Гриб подоспора обычно живет двадцать пять дней, а с измененным геном живет уже несколько лет и не имеет никаких признаков старения, он все растет и растет. «И что знаменательно для меня, - продолжает Скулачев, - при включении запасного механизма клеточного дыхания практически не образуется ядовитых форм кислорода». Налицо явное влияние активных форм кислорода на старение.